A Projection Approach to Adaptive Ifir Filtering
نویسندگان
چکیده
Current adaptive interpolated finite impulse response (IFIR) filtering algorithms update the interpolation filter and the model filter separately while in each case the other filter is fixed. In contrast, we modify the standard least mean squares (LMS) algorithm such that after each iteration the adapted filter is projected back into the set of IFIR filters. This can be considered a joint update of the interpolation filter and the model filter. We also propose a simplified version of our new algorithm. With K and D denoting the lengths of the model and the interpolation filter, respectively, the complexity of our new simplified projected LMS algorithm is only O(K+D) flops per iteration. Normalized variants of the new algorithms are derived as well. The performance of the new simplified normalized algorithm is compared in two numerical examples with a current state-of-the-art adaptive IFIR filtering algorithm. We find that our new algorithm converges faster. At the same time, our algorithm does not require experimental tuning of the step size.
منابع مشابه
A Family of Selective Partial Update Affine Projection Adaptive Filtering Algorithms
In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms...
متن کاملMetal Artifact Reduction of Dental Fillings in Head and Neck CT Images
Introduction: The issue of metal artifact and its reduction is as old as the clinical use of computed tomography itself. When metal objects such as dental fillings, hip prostheses or surgical clips are present in the computed tomography (CT) field of view (FOV), make severe artifacts that reduce the image quality and accuracy of CT numbers. They can lead to unreliable ...
متن کاملImage Restoration with Two-Dimensional Adaptive Filter Algorithms
Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (...
متن کاملOptimized computational Afin image algorithm using combination of update coefficients and wavelet packet conversion
Updating Optimal Coefficients and Selected Observations Affine Projection is an effective way to reduce the computational and power consumption of this algorithm in the application of adaptive filters. On the other hand, the calculation of this algorithm can be reduced by using subbands and applying the concept of filtering the Set-Membership in each subband. Considering these concepts, the fir...
متن کاملSpeech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering
This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...
متن کامل